Search Results

You are looking at 1 - 8 of 8 items for

  • Author: the British Society of Echocardiography Education Committee x
  • All content x
Clear All Modify Search
Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

This guideline presents reference limits for use in echocardiographic practice, updating previous guidance from the British Society of Echocardiography. The rationale for change is discussed, in addition to how the reference intervals were defined and the current limitations to their use. The importance of interpretation of echocardiographic parameters within the clinical context is explored, as is grading of abnormality. Each of the following echo parameters are discussed and updated in turn: left ventricular linear dimensions and LV mass; left ventricular volumes; left ventricular ejection fraction; left atrial size; right heart parameters; aortic dimensions; and tissue Doppler imaging. There are several important conceptual changes to the assessment of the heart’s structure and function within this guideline. New terminology for left ventricular function and left atrial size are introduced. The British Society of Echocardiography has advocated a new approach to the assessment of the aortic root, the right heart, and clarified the optimal methodology for assessment of LA size. The British Society of Echocardiography has emphasized a preference to use, where feasible, indexed measures over absolute values for any chamber size.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Abbas Zaidi, Daniel S Knight, Daniel X Augustine, Allan Harkness, David Oxborough, Keith Pearce, Liam Ring, Shaun Robinson, Martin Stout, James Willis, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

The structure and function of the right side of the heart is influenced by a wide range of physiological and pathological conditions. Quantification of right heart parameters is important in a variety of clinical scenarios including diagnosis, prognostication, and monitoring response to therapy. Although echocardiography remains the first-line imaging investigation for right heart assessment, published guidance is relatively sparse in comparison to that for the left ventricle. This guideline document from the British Society of Echocardiography describes the principles and practical aspects of right heart assessment by echocardiography, including quantification of chamber dimensions and function, as well as assessment of valvular function. While cut-off values for normality are included, a disease-oriented approach is advocated due to the considerable heterogeneity of structural and functional changes seen across the spectrum of diseases affecting the right heart. The complex anatomy of the right ventricle requires special considerations and echocardiographic techniques, which are set out in this document. The clinical relevance of right ventricular diastolic function is introduced, with practical guidance for its assessment. Finally, the relatively novel techniques of three-dimensional right ventricular echocardiography and right ventricular speckle tracking imaging are described. Despite these techniques holding considerable promise, issues relating to reproducibility and inter-vendor variation have limited their clinical utility to date.

Open access

Thomas Mathew, Lynne Williams, Govardhan Navaratnam, Bushra Rana, Richard Wheeler, Katherine Collins, Allan Harkness, Richard Jones, Dan Knight, Kevin O'Gallagher, David Oxborough, Liam Ring, Julie Sandoval, Martin Stout, Vishal Sharma, Richard P Steeds, and on behalf of the British Society of Echocardiography Education Committee

Heart failure (HF) is a debilitating and life-threatening condition, with 5-year survival rate lower than breast or prostate cancer. It is the leading cause of hospital admission in over 65s, and these admissions are projected to rise by more than 50% over the next 25 years. Transthoracic echocardiography (TTE) is the first-line step in diagnosis in acute and chronic HF and provides immediate information on chamber volumes, ventricular systolic and diastolic function, wall thickness, valve function and the presence of pericardial effusion, while contributing to information on aetiology. Dilated cardiomyopathy (DCM) is the third most common cause of HF and is the most common cardiomyopathy. It is defined by the presence of left ventricular dilatation and left ventricular systolic dysfunction in the absence of abnormal loading conditions (hypertension and valve disease) or coronary artery disease sufficient to cause global systolic impairment. This document provides a practical approach to diagnosis and assessment of dilated cardiomyopathy that is aimed at the practising sonographer.

Open access

Daniel X Augustine, Lindsay D Coates-Bradshaw, James Willis, Allan Harkness, Liam Ring, Julia Grapsa, Gerry Coghlan, Nikki Kaye, David Oxborough, Shaun Robinson, Julie Sandoval, Bushra S Rana, Anjana Siva, Petros Nihoyannopoulos, Luke S Howard, Kevin Fox, Sanjeev Bhattacharyya, Vishal Sharma, Richard P Steeds, Thomas Mathew, and the British Society of Echocardiography Education Committee

Pulmonary hypertension is defined as a mean arterial pressure of ≥25 mmHg as confirmed on right heart catheterisation. Traditionally, the pulmonary arterial systolic pressure has been estimated on echo by utilising the simplified Bernoulli equation from the peak tricuspid regurgitant velocity and adding this to an estimate of right atrial pressure. Previous studies have demonstrated a correlation between this estimate of pulmonary arterial systolic pressure and that obtained from invasive measurement across a cohort of patients. However, for an individual patient significant overestimation and underestimation can occur and the levels of agreement between the two is poor. Recent guidance has suggested that echocardiographic assessment of pulmonary hypertension should be limited to determining the probability of pulmonary hypertension being present rather than estimating the pulmonary artery pressure. In those patients in whom the presence of pulmonary hypertension requires confirmation, this should be done with right heart catheterisation when indicated. This guideline protocol from the British Society of Echocardiography aims to outline a practical approach to assessing the probability of pulmonary hypertension using echocardiography and should be used in conjunction with the previously published minimum dataset for a standard transthoracic echocardiogram.

Open access

Rakhee Hindocha, David Garry, Nadia Short, Tom E Ingram, Richard P Steeds, Claire L Colebourn, Keith Pearce, Vishal Sharma, and the Accreditation and Education Committees of the British Society of Echocardiography

The British Society of Echocardiography has previously outlined a minimum dataset for a standard transthoracic echocardiogram, and this remains the basis on which an echocardiographic study should be performed. The importance of ultrasound in excluding critical conditions that may require urgent treatment is well known. Several point-of-care echo protocols have been developed for use by non-echocardiography specialists. However, these protocols are often only used in specific circumstances and are usually limited to 2D echocardiography. Furthermore, although the uptake in training for these protocols has been reasonable, there is little in the way of structured support available from accredited sonographers in the ongoing training and re-accreditation of those undertaking these point-of-care scans. In addition, it is well recognised that the provision of echocardiography on a 24/7 basis is extremely challenging, particularly outside of tertiary cardiac centres. Consequently, following discussions with NHS England, the British Society of Echocardiography has developed the Level 1 echocardiogram in order to support the rapid identification of critical cardiac pathology that may require emergency treatment. It is intended that these scans will be performed by non-specialists in echocardiography and crucially are not designed to replace a full standard transthoracic echocardiogram. Indeed, it is expected that a significant number of patients, in whom a Level 1 echocardiogram is required, will need to have a full echocardiogram performed as soon as is practically possible. This document outlines the minimum dataset for a Level 1 echocardiogram. The accreditation process for Level 1 echo is described separately.

Open access

Daniel X Augustine, Lindsay D Coates-Bradshaw, James Willis, Allan Harkness, Liam Ring, Julia Grapsa, Gerry Coghlan, Nikki Kaye, David Oxborough, Shaun Robinson, Julie Sandoval, Bushra S Rana, Anjana Siva, Petros Nihoyannopoulos, Luke S Howard, Kevin Fox, Sanjeev Bhattacharyya, Vishal Sharma, Richard P Steeds, Thomas Mathew, and the British Society of Echocardiography Education Committee