Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Stuart Gillon x
Clear All Modify Search
Open access

Ashraf Roshdy, Nadia Francisco, Alejandro Rendon, Stuart Gillon and David Walker

The use of echocardiography, whilst well established in cardiology, is a relatively new concept in critical care medicine. However, in recent years echocardiography's potential as both a diagnostic tool and a form of advanced monitoring in the critically ill patient has been increasingly recognised. In this series of Critical Care Echo Rounds, we explore the role of echocardiography in critical illness, beginning here with haemodynamic instability. We discuss the pathophysiology of the shock state, the techniques available to manage haemodynamic compromise, and the unique role which echocardiography plays in this complex process.


A 69-year-old female presents to the emergency department with a fever, confusion and pain on urinating. Her blood pressure on arrival was 70/40, with heart rate of 117 bpm Despite 3 l of i.v. fluid she remained hypotensive. A central venous catheter was inserted and noradrenaline infusion commenced, and she was admitted to the intensive care unit for management of her shock state. At 6 h post admission, she was on high dose of noradrenaline (0.7 μg/kg per min) but blood pressure remained problematic. An echocardiogram was requested to better determine her haemodynamic state.

Open access

Andreas Zafiropoulos, Kaleab Asrress, Simon Redwood, Stuart Gillon and David Walker

Management of medical cardiac arrest is challenging. The internationally agreed approach is highly protocolised with therapy and diagnosis occurring in parallel. Early identification of the precipitating cause increases the likelihood of favourable outcome. Echocardiography provides an invaluable diagnostic tool in this context. Acquisition of echo images can be challenging in cardiac arrest and should occur in a way that minimises disruption to cardiopulmonary resuscitation (CPR). In this article, the reversible causes of cardiac arrest are reviewed with associated echocardiography findings.


A 71-year-old patient underwent right upper lobectomy for lung adenocarcinoma. On the 2nd post-operative day, he developed respiratory failure with rising oxygen requirement and right middle and lower lobe collapse and consolidation on chest X-ray. He was commenced on high-flow oxygen therapy and antibiotics. His condition continued to deteriorate and on the 3rd post-operative day he was intubated and mechanically ventilated. Six hours after intubation, he became suddenly hypotensive with a blood pressure of 50 systolic and then lost cardiac output. ECG monitoring showed pulseless electrical activity. CPR was commenced and return of circulation occurred after injection of 1 mg of adrenaline. Focused echocardiography was performed, which demonstrated signs of massive pulmonary embolism. Thrombolytic therapy with tissue plasminogen activator was given and his condition stabilised.

Open access

Kelly Victor, Nicholas A Barrett, Stuart Gillon, Abigail Gowland, Christopher I S Meadows and Nicholas Ioannou

Extracorporeal membrane oxygenation (ECMO) is an advanced form of organ support indicated in selected cases of severe cardiovascular and respiratory failure. Echocardiography is an invaluable diagnostic and monitoring tool in all aspects of ECMO support. The unique nature of ECMO, and its distinct effects upon cardio-respiratory physiology, requires the echocardiographer to have a sound understanding of the technology and its interaction with the patient. In this article, we introduce the key concepts underpinning commonly used modes of ECMO and discuss the role of echocardiography.


A 38-year-old lady, with no significant past medical history, was admitted to her local hospital with group A Streptococcal pneumonia. Rapidly progressive respiratory failure ensued and, despite intubation and maximal ventilatory support, adequate oxygenation proved impossible. She was attended by the regional severe respiratory failure service who established her on veno-venous (VV)-ECMO for respiratory support. Systemic oxygenation improved; however, significant cardiovascular compromise was encountered and echocardiography demonstrated a severe septic cardiomyopathy (ejection fraction <15%, aortic velocity time integral 5.9 cm and mitral regurgitation dP/dt 672 mmHg/s). Her ECMO support was consequently converted to a veno-veno-arterial configuration, thus providing additional haemodynamic support. As the sepsis resolved, arterial ECMO support was weaned under echocardiographic guidance; subsequent resolution of intrinsic respiratory function allowed the weaning of VV-ECMO support. The patient was liberated from ECMO 7 days after hospital admission.