Search Results

You are looking at 1 - 10 of 21 items for

  • Abstract: prosthetic valves x
  • Abstract: prosthetic valve endocarditis x
  • Abstract: prosthetic valve thrombosis x
  • Abstract: heart valve replacement x
  • Abstract: transcatheter aortic valve replacement x
  • Abstract: infective endocarditis x
  • Abstract: replacement heart valves x
  • Abstract: TAVI x
  • Abstract: transcatheter valves x
Clear All Modify Search
Open access

Caroline Bleakley, Mehdi Eskandari and Mark Monaghan

Transcatheter aortic valve implantation (TAVI) was initially proven as an alternative to valve replacement therapy in those beyond established risk thresholds for conventional surgery. With time the technique has been methodically refined and offered to a progressively lower risk cohort, and with this evolution has come that of the significant imaging requirements of valve implantation. This review discusses the role of transoesophageal echocardiography (TOE) in the current TAVI arena, aligning it with that of cardiac computed tomography, and outlining how TOE can be used most effectively both prior to and during TAVI in order to optimise outcomes.

Open access

I J Ingimarsdóttir, L Hellgren Johansson and F A Flachskampf


The aortic annulus diameter measured by transthoracic echocardiography yields lower values than by computed tomography, and echo-based selection of transcatheter aortic valve prosthesis size has been implied to result in more frequent paravalvular leakage. We investigated the relation of preoperative annulus diameter by echo with the ring size of the aortic prosthesis chosen by direct assessment during open-heart aortic valve replacement.


Preoperative annulus diameter by echo (from parasternal long-axis cross-sections of the left ventricular outflow tract and aortic valve) and implanted prosthetic diameter (tissue annulus diameter, determined intraoperatively using a sizing instrument) were compared retrospectively in 285 consecutive patients undergoing open-heart aortic valve replacement.


A total of 285 prostheses (240 biologic and 45 mechanical) were implanted, with prosthetic diameter ranging between 19 and 27 mm. There was a significant linear correlation (P < 0.0001) with r = 0.51, between preoperative annulus diameter by echo (mean 21.8 ± 2.8 mm) and prosthetic diameter (22.9 ± 1.7 mm). Preoperative annulus diameter of patients receiving prostheses no. 21, 23 and 25 mm aortic prostheses (the most frequent prosthesis sizes) were significantly different (P < 0.001) from each other. On average, preoperative annulus diameter by echo underestimated prosthetic diameter by a bias of 1.07 mm.


Our data confirm that preoperative echo assessment of the aortic valve may slightly underestimates the optimal surgical prosthesis diameter for the aortic valve annulus.

Open access

Y Tayyareci, R Dworakowski, P Kogoj, J Reiken, C Kenny, P MacCarthy, O Wendler and M J Monaghan


To assess the impact of mitral geometry, left ventricular (LV) remodelling and global LV afterload on mitral regurgitation (MR) after trans-catheter aortic valve implantation (TAVI).


In this study, 60 patients who underwent TAVI were evaluated by 3D echocardiography at baseline, 1 month and 6 months after procedure. The proportional change in MR following TAVI was determined by examining the percentage change in vena contracta (VC) at 6 months. Patients having a significant reduction of at least 30% in VC were defined as good responders (GR) and the remaining patients were defined as poor responders (PR).


After 6 months of TAVI, 27 (45%) patients were GR and 33 (55%) were PR. There was a significant decrease in 3DE-derived mitral annular diameter and area (P = 0.001), mitral valve tenting area (TA) (P = 0.05), and mitral papillary muscle dyssynchrony index (DSI) (P = 0.05) in the GR group. 3DE-derived LVESV (P = 0.016), LV mass (P = 0.001) and LV DSI, (P = 0.001) were also improved 6 months after TAVI. In addition, valvulo-arterial impedance (ZVA) was significantly higher at baseline in patients with PR (P = 0.028). 3DE-derived mitral annular area (β: 0.47, P = 0.04), mitral papillary DSI (β: −0.65, P = 0.012) and ZVA (β: 0.45, P = 0.028) were the strongest independent parameters that could predict the reduction of functional MR after TAVI.


GR patients demonstrate more regression in mitral annulus area and diameter after significant decrease in high LVEDP and trans-aortic gradients with TAVI. PR patients appear to have increased baseline ZVA, mitral valve tenting and restriction in mitral valve coaptation. These factors are important for predicting the impact of TAVI on pre-existing MR.

Open access

Renuka Jain, Daniel P O’Hair, Tanvir K Bajwa, Denise Ignatowski, Daniel Harland, Amanda M Kirby, Tracy Hammonds, Suhail Q Allaqaband, Jonathan Kay and Bijoy K Khandheria


While transcatheter aortic valve implantation (TAVI) has traditionally been supported intraprocedurally by transoesophageal echocardiography (TOE), transthoracic echocardiography (TTE) is increasingly being used. We evaluated echocardiographic imaging characteristics and clinical outcomes in patients who underwent TTE during TAVI (TTE-TAVI).

Methods and results

A select team of dedicated sonographers and interventional echocardiographers performed TTE-TAVI in 278 patients, all of whom underwent TAVI through transfemoral access. We implanted the Medtronic EVOLUT R valve in 258 patients (92.8%). TTE images were acquired immediately pre-procedure by a dedicated sonographer in the cardiac catheterization laboratory with the patient in the supine position. TTE was then performed post deployment of TAVI. In the procedure, TTE image quality was fair or better in 249 (89.6%) cases. Color-flow Doppler was adequate or better in 275 (98.9%) cases. In 2 cases, paravalvular regurgitation (PVL) could not be assessed confidently by echocardiography due to poor image quality; in those cases, PVL was assessed by fluoroscopy, aortic root injection and invasive hemodynamics. Both TTE and invasive hemodynamics were used in the assessment of need for post-deployment stent ballooning (n = 23, 8.3%). TTE adequately recognized new pericardial effusion in 3 cases. No case required TOE conversion for image quality. There was only 1 case of intraprocedural TTE failing to recognize moderate PVL, without clinical implication. In 99% of patients, TTE-TAVI adequately assessed PVL compared with 24-h and 1-month follow-up TTE.


With the current generation of TAVI, TTE-TAVI is adequate intraprocedurally when performed by specialized sonographers and dedicated cardiologists in a highly experienced TAVI center.

Open access

Justin Jose, Kirsty Randall, Julia Baron and Jeffrey Khoo

Transthoracic echocardiography (TTE) is widely used as a pre-operative screening tool. It can provide extensive information about cardiac function and underlying pathology, which could influence decisions regarding surgery. This patient was referred for TTE as part of the pre-op screening, as he had a biological prosthetic aortic valve. This was a rare case where misleading TTE measurements inadvertently led to the patient being referred for transcatheter aortic valve replacement (TAVR), which delayed non-cardiac surgery.

Routine pre-op TTE in a district hospital showed severely increased gradients compared to the previous year, so the patient was referred to a tertiary centre for TAVR. However peri-operative trans-oesophageal echocardiography (TOE) showed lower gradients and satisfactory valve area. The cause of high gradients at the time of pre-op screening was retrospectively attributed to profound anaemia present at the time. When the anaemia was corrected, the prosthetic valve gradients reduced to levels similar to the previous year. This case reiterates the fact that Echocardiographers should be familiar with haemodynamic factors that could affect the validity of Doppler measurements that use Bernoulli’s equation and the continuity principle. This report also looks at how echocardiographers can mitigate the effects of non-valvar factors.

Open access

John Fryearson, Nicola C Edwards, Sagar N Doshi and Richard P Steeds

Transcatheter aortic valve implantation is now accepted as a standard mode of treatment for an increasingly large population of patients with severe aortic stenosis. With the availability of this technique, echocardiographers need to be familiar with the imaging characteristics that can help to identify which patients are best suited to conventional surgery or transcatheter aortic valve implantation, and what parameters need to be measured. This review highlights the major features that should be assessed during transthoracic echocardiography before presentation of the patient to the ‘Heart Team’. In addition, this review summarises the aspects to be considered on echocardiography during follow-up assessment after successful implantation of a transcatheter aortic valve.

Open access

Annari van Rensburg, Philip Herbst and Anton Doubell

The therapeutic implications of bicuspid aortic valve associations have come under scrutiny in the transcatheter aortic valve implantation era. We evaluate the spectrum of mitral valve disease in patients with bicuspid aortic valves to determine the need for closer echocardiographic scrutiny/follow-up of the mitral valve. A retrospective analysis of echocardiograms done at a referral hospital over five years was conducted in patients with bicuspid aortic valves with special attention to congenital abnormalities of the mitral valve. One hundred and forty patients with a bicuspid aortic valve were included. A congenital mitral valve abnormality was present in eight (5.7%, P = 0.01) with a parachute mitral valve in four (2.8%), an accessory mitral valve leaflet in one (0.7%), mitral valve prolapse in one, a cleft in one and the novel finding of a trileaflet mitral valve in one. Minor abnormalities included an elongated anterior mitral valve leaflet (P < 0.001), the increased incidence of physiological mitral regurgitation (P < 0.001), abnormal papillary muscles (P = 0.002) and an additional chord or tendon in the left ventricle cavity (P = 0.007). Mitral valve abnormalities occur more commonly in patients with bicuspid aortic valves than matched healthy individuals. The study confirms that abnormalities in these patients extend beyond the aorta. These abnormalities did not have a significant functional effect.

Open access

Isaac Adembesa, Adriaan Myburgh and Justiaan Swanevelder


We present a patient with rheumatic heart disease involving all the heart valves. An intraoperative transoesophageal echocardiography confirmed severe mitral stenosis, severe aortic regurgitation, severe tricuspid regurgitation and stenosis, and severe pulmonary stenosis. The patient underwent successful quadruple valve replacement during a single operation at the Groote Schuur Hospital, Cape Town, South Africa.

Learning points:

  • Rheumatic heart disease can affect all the heart valves including the pulmonary valve.
  • Intraoperative transoesophageal echocardiography is key for diagnosis, monitoring and confirmation of successful surgical result during heart valve surgery.
  • Combined surgical procedure of all four valves is possible though associated with long procedural time.
Open access

John B Chambers, Madalina Garbi, Norman Briffa, Vishal Sharma and Richard P Steeds

Echocardiography plays a vital role in the follow-up of patients with replacement heart valves. However, there is considerable variation in international guidelines regarding the recommended time points after implantation at which routine echocardiography should be performed. The purpose of routine echocardiography is to detect early structural valve deterioration in biological valves to improve the timing of redo interventions. However, the risk of valve deterioration depends on many valve-related factors (valve design and patient prosthesis mismatch) and patient-related factors (age, diabetes, systemic hypertension, renal dysfunction and smoking). In this statement, the British Heart Valve Society and the British Society of Echocardiography suggest practical guidance. A plan should be made soon after implantation, but this may need to be modified for individual patients and as circumstances change. It is important that patients are managed in a multidisciplinary valve clinic.

Open access

David Messika-Zeitoun, Ian G Burwash and Thierry Mesana

Valvular heart disease (VHD) is responsible for a major societal and economic burden. Incidence and prevalence of VHD are high and increase as the population ages, creating the next epidemic. In Western countries, the etiology is mostly degenerative or functional disease and strikes an elderly population with multiple comorbidities. Epidemiological studies have shown that VHD is commonly underdiagnosed, leading to patients presenting late in their disease course, to an excess risk of mortality and morbidity and to a missed opportunity for intervention. Once diagnosed, VHD is often undertreated with patients unduly denied intervention, the only available curative treatment. This gap between current recommendations and clinical practice and the marked under-treatment is at least partially related to poor knowledge of current National and International Societies Guidelines. Development of a valvular heart team involving multidisciplinary valve specialists including clinicians, imaging specialists, interventional cardiologists and surgeons is expected to fill these gaps and to offer an integrated care addressing all issues of patient management from evaluation, risk-assessment, decision-making and performance of state-of-the-art surgical and transcatheter interventions. The valvular heart team will select the right treatment for the right patient, improving cost-effectiveness and ultimately patients’ outcomes.