Search Results

You are looking at 11 - 20 of 24 items for

  • Author: David Oxborough x
  • All content x
Clear All Modify Search
Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Hisham Sharif, Stephen Ting, Lynsey Forsythe, Gordon McGregor, Prithwish Banerjee, Deborah O’Leary, David Ditor, Keith George, Daniel Zehnder, and David Oxborough

This study sought to examine layer-specific longitudinal and circumferential systolic and diastolic strain, strain rate (SR) and diastolic time intervals in hypertensive patients with and without diastolic dysfunction. Fifty-eight treated hypertensive patients were assigned to normal diastolic function (NDF, N = 39) or mild diastolic dysfunction (DD, N = 19) group. Layer-specific systolic and diastolic longitudinal and circumferential strains and SR were assessed. Results showed no between-group difference in left ventricular mass index (DD: 92.1 ± 18.1 vs NDF: 88.4 ± 16.3; P = 0.44). Patients with DD had a proportional reduction in longitudinal strain across the myocardium (endocardial for DD −13 ± 4%; vs NDF −17 ± 3, P < 0.01; epicardial for DD −10 ± 3% vs NDF −13 ± 3%, P < 0.01; global for DD: −12 ± 3% vs NDF: −15 ± 3, P = 0.01), and longitudinal mechanical diastolic impairments as evidenced by reduced longitudinal strain rate of early diastole (DD 0.7 ± 0.2 L/s vs NDF 1.0 ± 0.3 L/s, P < 0.01) and absence of a transmural gradient in the duration of diastolic strain (DD endocardial: 547 ± 105 ms vs epicardial: 542 ± 113 ms, P = 0.24; NDF endocardial: 566 ± 86 ms vs epicardial: 553 ± 77 ms, P = 0.03). Patients with DD also demonstrate a longer duration of early circumferential diastolic strain (231 ± 71 ms vs 189 ± 58 ms, P = 0.02). In conclusion, hypertensive patients with mild DD demonstrate a proportional reduction in longitudinal strain across the myocardium, as well as longitudinal mechanical diastolic impairment, and prolonging duration of circumferential mechanical relaxation.

Open access

Abbas Zaidi, Daniel S Knight, Daniel X Augustine, Allan Harkness, David Oxborough, Keith Pearce, Liam Ring, Shaun Robinson, Martin Stout, James Willis, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

The structure and function of the right side of the heart is influenced by a wide range of physiological and pathological conditions. Quantification of right heart parameters is important in a variety of clinical scenarios including diagnosis, prognostication, and monitoring response to therapy. Although echocardiography remains the first-line imaging investigation for right heart assessment, published guidance is relatively sparse in comparison to that for the left ventricle. This guideline document from the British Society of Echocardiography describes the principles and practical aspects of right heart assessment by echocardiography, including quantification of chamber dimensions and function, as well as assessment of valvular function. While cut-off values for normality are included, a disease-oriented approach is advocated due to the considerable heterogeneity of structural and functional changes seen across the spectrum of diseases affecting the right heart. The complex anatomy of the right ventricle requires special considerations and echocardiographic techniques, which are set out in this document. The clinical relevance of right ventricular diastolic function is introduced, with practical guidance for its assessment. Finally, the relatively novel techniques of three-dimensional right ventricular echocardiography and right ventricular speckle tracking imaging are described. Despite these techniques holding considerable promise, issues relating to reproducibility and inter-vendor variation have limited their clinical utility to date.

Open access

Liam Ring, Benoy N Shah, Sanjeev Bhattacharyya, Allan Harkness, Mark Belham, David Oxborough, Keith Pearce, Bushra S Rana, Daniel X Augustine, Shaun Robinson, and Christophe Tribouilloy

The guideline provides a practical step-by-step guide in order to facilitate high-quality echocardiographic studies of patients with aortic stenosis. In addition, it addresses commonly encountered yet challenging clinical scenarios and covers the use of advanced echocardiographic techniques, including TOE and Dobutamine stress echocardiography in the assessment of aortic stenosis.

Open access

David Oxborough, Saqib Ghani, Allan Harkness, Guy Lloyd, William Moody, Liam Ring, Julie Sandoval, Roxy Senior, Nabeel Sheikh, Martin Stout, Victor Utomi, James Willis, Abbas Zaidi, and Richard Steeds

The aim of the study is to establish the impact of 2D echocardiographic methods on absolute values for aortic root dimensions and to describe any allometric relationship to body size. We adopted a nationwide cross-sectional prospective multicentre design using images obtained from studies utilising control groups or where specific normality was being assessed. A total of 248 participants were enrolled with no history of cardiovascular disease, diabetes, hypertension or abnormal findings on echocardiography. Aortic root dimensions were measured at the annulus, the sinus of Valsalva, the sinotubular junction, the proximal ascending aorta and the aortic arch using the inner edge and leading edge methods in both diastole and systole by 2D echocardiography. All dimensions were scaled allometrically to body surface area (BSA), height and pulmonary artery diameter. For all parameters with the exception of the aortic annulus, dimensions were significantly larger in systole (P<0.05). All aortic root and arch measurements were significantly larger when measured using the leading edge method compared with the inner edge method (P<0.05). Allometric scaling provided a b exponent of BSA0.6 in order to achieve size independence. Similarly, ratio scaling to height in subjects under the age of 40 years also produced size independence. In conclusion, the largest aortic dimensions occur in systole while using the leading edge method. Reproducibility of measurement, however, is better when assessing aortic dimensions in diastole. There is an allometric relationship to BSA and, therefore, allometric scaling in the order of BSA0.6 provides a size-independent index that is not influenced by the age or gender.

Open access

Daniel X Augustine, Lindsay D Coates-Bradshaw, James Willis, Allan Harkness, Liam Ring, Julia Grapsa, Gerry Coghlan, Nikki Kaye, David Oxborough, Shaun Robinson, Julie Sandoval, Bushra S Rana, Anjana Siva, Petros Nihoyannopoulos, Luke S Howard, Kevin Fox, Sanjeev Bhattacharyya, Vishal Sharma, Richard P Steeds, Thomas Mathew, and the British Society of Echocardiography Education Committee

Pulmonary hypertension is defined as a mean arterial pressure of ≥25 mmHg as confirmed on right heart catheterisation. Traditionally, the pulmonary arterial systolic pressure has been estimated on echo by utilising the simplified Bernoulli equation from the peak tricuspid regurgitant velocity and adding this to an estimate of right atrial pressure. Previous studies have demonstrated a correlation between this estimate of pulmonary arterial systolic pressure and that obtained from invasive measurement across a cohort of patients. However, for an individual patient significant overestimation and underestimation can occur and the levels of agreement between the two is poor. Recent guidance has suggested that echocardiographic assessment of pulmonary hypertension should be limited to determining the probability of pulmonary hypertension being present rather than estimating the pulmonary artery pressure. In those patients in whom the presence of pulmonary hypertension requires confirmation, this should be done with right heart catheterisation when indicated. This guideline protocol from the British Society of Echocardiography aims to outline a practical approach to assessing the probability of pulmonary hypertension using echocardiography and should be used in conjunction with the previously published minimum dataset for a standard transthoracic echocardiogram.

Open access

Gill Wharton, Richard Steeds, Jane Allen, Hollie Phillips, Richard Jones, Prathap Kanagala, Guy Lloyd, Navroz Masani, Thomas Mathew, David Oxborough, Bushra Rana, Julie Sandoval, Richard Wheeler, Kevin O'Gallagher, and Vishal Sharma

There have been significant advances in the field of echocardiography with the introduction of a number of new techniques into standard clinical practice. Consequently, a ‘standard’ echocardiographic examination has evolved to become a more detailed and time-consuming examination that requires a high level of expertise. This Guideline produced by the British Society of Echocardiography (BSE) Education Committee aims to provide a minimum dataset that should be obtained in a comprehensive standard echocardiogram. In addition, the layout proposes a recommended sequence in which to acquire the images. If abnormal pathology is detected, additional views and measurements should be obtained with reference to other BSE protocols when appropriate. Adherence to these recommendations will promote an increased quality of echocardiography and facilitate accurate comparison of studies performed either by different operators or at different departments.

Open access

Thomas Mathew, Lynne Williams, Govardhan Navaratnam, Bushra Rana, Richard Wheeler, Katherine Collins, Allan Harkness, Richard Jones, Dan Knight, Kevin O'Gallagher, David Oxborough, Liam Ring, Julie Sandoval, Martin Stout, Vishal Sharma, Richard P Steeds, and on behalf of the British Society of Echocardiography Education Committee

Heart failure (HF) is a debilitating and life-threatening condition, with 5-year survival rate lower than breast or prostate cancer. It is the leading cause of hospital admission in over 65s, and these admissions are projected to rise by more than 50% over the next 25 years. Transthoracic echocardiography (TTE) is the first-line step in diagnosis in acute and chronic HF and provides immediate information on chamber volumes, ventricular systolic and diastolic function, wall thickness, valve function and the presence of pericardial effusion, while contributing to information on aetiology. Dilated cardiomyopathy (DCM) is the third most common cause of HF and is the most common cardiomyopathy. It is defined by the presence of left ventricular dilatation and left ventricular systolic dysfunction in the absence of abnormal loading conditions (hypertension and valve disease) or coronary artery disease sufficient to cause global systolic impairment. This document provides a practical approach to diagnosis and assessment of dilated cardiomyopathy that is aimed at the practising sonographer.

Open access

Shaun Robinson, Bushra Rana, David Oxborough, Rick Steeds, Mark Monaghan, Martin Stout, Keith Pearce, Allan Harkness, Liam Ring, Maria Paton, Waheed Akhtar, Radwa Bedair, Sanjeev Bhattacharyya, Katherine Collins, Cheryl Oxley, Julie Sandoval, Rebecca Schofield MBChB, Anjana Siva, Karen Parker, James Willis, and Daniel X Augustine

Since cardiac ultrasound was introduced into medical practice around the middle twentieth century, transthoracic echocardiography has developed to become a highly sophisticated and widely performed cardiac imaging modality in the diagnosis of heart disease. This evolution from an emerging technique with limited application, into a complex modality capable of detailed cardiac assessment has been driven by technological innovations that have both refined ‘standard’ 2D and Doppler imaging and led to the development of new diagnostic techniques. Accordingly, the adult transthoracic echocardiogram has evolved to become a comprehensive assessment of complex cardiac anatomy, function and haemodynamics. This guideline protocol from the British Society of Echocardiography aims to outline the minimum dataset required to confirm normal cardiac structure and function when performing a comprehensive standard adult echocardiogram and is structured according to the recommended sequence of acquisition. It is recommended that this structured approach to image acquisition and measurement protocol forms the basis of every standard adult transthoracic echocardiogram. However, when pathology is detected and further analysis becomes necessary, views and measurements in addition to the minimum dataset are required and should be taken with reference to the appropriate British Society of Echocardiography imaging protocol. It is anticipated that the recommendations made within this guideline will help standardise the local, regional and national practice of echocardiography, in addition to minimising the inter and intra-observer variation associated with echocardiographic measurement and interpretation.

Open access

David Oxborough, Daniel Augustine, Sabiha Gati, Keith George, Allan Harkness, Thomas Mathew, Michael Papadakis, Liam Ring, Shaun Robinson, Julie Sandoval, Rizwan Sarwar, Sanjay Sharma, Vishal Sharma, Nabeel Sheikh, John Somauroo, Martin Stout, James Willis, and Abbas Zaidi

Sudden cardiac death (SCD) in an athlete is a rare but tragic event. In view of this, pre-participation cardiac screening is mandatory across many sporting disciplines to identify those athletes at risk. Echocardiography is a primary investigation utilized in the pre-participation setting and in 2013 the British Society of Echocardiography and Cardiac Risk in the Young produced a joint policy document providing guidance on the role of echocardiography in this setting. Recent developments in our understanding of the athlete’s heart and the application of echocardiography have prompted this 2018 update.