Search Results

You are looking at 1 - 10 of 20 items for

  • Author: Shaun Robinson x
  • User-accessible content x
Clear All Modify Search
Open access

Emily Worley, Bushra Rana, Lynne Williams, and Shaun Robinson

Objective

The left atrium (LA) is exposed to left ventricular pressure during diastole. Applying the 2016 American Society of Echocardiography left ventricular diastolic function (LVDF) guidelines, this study aims to investigate whether left atrial ejection fraction (LAEF) and left atrial active emptying fraction (LAAEF) are markers of diastolic dysfunction (LVDD).

Methods

Retrospective cohort of consecutive patients (n = 124) who underwent transthoracic echocardiography were studied. Doppler peak velocities of passive (MV E) and active filling (MV A) were measured and ratio E/A calculated. Tissue Doppler imaging parameters of peak early (e′) of the septal and lateral mitral annulus were measured, and average E/e′ ratio (E/e′) was calculated. Tricuspid regurgitation velocity, left atrial maximum volume, left atrial minimum volume and LA volume pre-contraction were measured, allowing calculation of LAEF and LAAEF. Subjects were assigned LVDF categories.

Results

Binomial logistic regression model (X2(2) = 48.924, P < 0.01) determined that LAEF and LAAEF predicted diastolic dysfunction with sensitivity 85.5% and specificity 78%. ROC curves determined good diagnostic accuracy for LAEF and LAAEF to predict LVDD, AUC 0.826 and 0.861 respectively. Logistic regression model (X2(2) = 39.525, P < 0.01) predicted those patients with E/e′ ≥14 using LAEF and LAAEF with sensitivity 51.6% and specificity 92.4%. Moderate correlations were found between E/e′ and log derivatives of LAEF and LAAEF.

Conclusions

A decline in LAAEF and LAEF is associated with worsening LVDD.

Open access

Brian Campbell, Shaun Robinson, and Bushra Rana

At its inception, transthoracic echocardiography (TTE) was employed as a basic screening tool for the diagnosis of heart valve disease and as a crude indicator of left ventricular function. Since then, echocardiography has developed into a highly valued non-invasive imaging technique capable of providing extremely complex data for the diagnosis of even the subtlest cardiac pathologies. Its role is now pivotal in the diagnosis and monitoring of heart disease. With the evolution of advanced practice and devolving care, ordinarily performed by senior doctors, to the cardiac physiology workforce in the UK, significant benefits in terms of timely patient care and cost savings are possible. However, there needs to be appropriate level of accountability. This accountability is achieved in the UK with statutory regulation of healthcare professionals and is a crucial element in the patient protection system, particularly for professions in patient facing roles. However, statutory regulation for staff practising echocardiography is not currently mandatory in the UK, despite the level of responsibility and influence on patient care. Regulators protect the public against the risk of poor practice by setting agreed standards of practice and competence and registering those who are competent to practice. Regulators take action if professionals on their register do not meet their standards. The current cardiac physiology workforce can be recognised as registered clinical scientists using equivalence process through the Academy for Healthcare Science, and this review aims to describe the process in detail.

Open access

Shaun Robinson, Liam Ring, Daniel X Augustine, Sushma Rekhraj, David Oxborough, Patrizzio Lancellotti, and Bushra Rana

Mitral valve disease is common. Mitral regurgitation is the second most frequent indication for valve surgery in Europe and despite the decline of rheumatic fever in western societies, mitral stenosis of any aetiology is a regular finding in all echo departments. Mitral valve disease is therefore one of the most common pathologies encountered by echocardiographers, as both a primary indication for echocardiography and a secondary finding when investigating other cardiovascular disease processes. Transthoracic and transoesophageal echocardiography (TOE) play a crucial role in the assessment of mitral valve disease and are essential to identifying the aetiology, mechanism and severity of disease and for helping determine the appropriate timing and method of intervention. This guideline, from the British Society of Echocardiography (BSE), describes the assessment of mitral regurgitation and mitral stenosis and replaces previous BSE guidelines describing the echocardiographic assessment of mitral anatomy prior to mitral valve repair surgery and percutaneous mitral valvuloplasty. It provides a comprehensive description of the imaging techniques (and their limitations) employed in the assessment of mitral valve disease. It describes a step-wise approach to identifying: aetiology and mechanism, disease severity, reparability and secondary effects on chamber geometry, function and pressures. Advanced echocardiographic techniques are described for both transthoracic and transoesophageal modalities, including TOE and exercise testing.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Abbas Zaidi, David Oxborough, Daniel X Augustine, Radwa Bedair, Allan Harkness, Bushra Rana, Shaun Robinson, and Luigi P Badano

Transthoracic echocardiography is the first-line imaging modality in the assessment of right-sided valve disease. The principle objectives of the echocardiographic study are to determine the aetiology, mechanism and severity of valvular dysfunction, as well as consequences on right heart remodelling and estimations of pulmonary artery pressure. Echocardiographic data must be integrated with symptoms, to inform optimal timing and technique of interventions. The most common tricuspid valve abnormality is regurgitation secondary to annular dilatation in the context of atrial fibrillation or left-sided heart disease. Significant pulmonary valve disease is most commonly seen in congenital heart abnormalities. The aetiology and mechanism of tricuspid and pulmonary valve disease can usually be identified by 2D assessment of leaflet morphology and motion. Colour flow and spectral Doppler are required for assessment of severity, which must integrate data from multiple imaging planes and modalities. Transoesophageal echo is used when transthoracic data is incomplete, although the anterior position of the right heart means that transthoracic imaging is often superior. Three-dimensional echocardiography is a pivotal tool for accurate quantification of right ventricular volumes and regurgitant lesion severity, anatomical characterisation of valve morphology and remodelling pattern, and procedural guidance for catheter-based interventions. Exercise echocardiography may be used to elucidate symptom status and demonstrate functional reserve. Cardiac magnetic resonance and CT should be considered for complimentary data including right ventricular volume quantification, and precise cardiac and extracardiac anatomy. This British Society of Echocardiography guideline aims to give practical advice on the standardised acquisition and interpretation of echocardiographic data relating to the pulmonary and tricuspid valves.

Open access

Cameron Dockerill, William Woodward, Annabelle McCourt, Cristiana Monteiro, Elena Benedetto, Maria Paton, David Oxborough, Shaun Robinson, Keith Pearce, Mark J Monaghan, Daniel X Augustine, and Paul Leeson

Introduction

Healthcare delivery is being transformed by COVID-19 to reduce transmission risk but continued delivery of routine clinical tests is essential. Stress echocardiography is one of the most widely used cardiac tests in the NHS. We assessed the impact of the first (W1) and second (W2) waves of the pandemic on the ability to deliver stress echocardiography.

Methods

Clinical echocardiography teams in 31 NHS hospitals participating in the EVAREST study were asked to complete a survey on the structure and delivery of stress echocardiography as well as its impact on patients and staff in July and November 2020. Results were compared to stress echocardiography activity in the same centre during January 2020.

Results

24 completed the survey in July, and 19 NHS hospitals completed the survey in November. A 55% reduction in the number of studies performed was reported in W1, recovering to exceed pre-COVID rates in W2. The major change was in the mode of stress delivery. 70% of sites stopped their exercise stress service in W1, compared to 19% in W2. In those still using exercise during W1, 50% were wearing FFP3/N95 masks, falling to 38% in W2. There was also significant variability in patient screening practices with 7 different pre-screening questionnaires used in W1 and 6 in W2.

Conclusion

Stress echocardiography delivery restarted effectively after COVID-19 with adaptations to reduce transmission that means activity has been able to continue, and exceed, pre-COVID-19 levels during the second wave. Further standardization of protocols for patient screening and PPE may help further improve consistency of practice within the United Kingdom.

Open access

Lauren Turvey, Daniel X Augustine, Shaun Robinson, David Oxborough, Martin Stout, Nicola Smith, Allan Harkness, Lynne Williams, Richard P Steeds, and William Bradlow

Hypertrophic cardiomyopathy (HCM) is common, inherited and characterised by unexplained thickening of the myocardium. The British Society of Echocardiography (BSE) has recently published a minimum dataset for transthoracic echocardiography detailing the core views needed for a standard echocardiogram. For patients with confirmed or suspected HCM, additional views and measurements are necessary. This guideline, therefore, supplements the minimum dataset and describes a tailored, stepwise approach to the echocardiographic examination, and echocardiography’s position in the diagnostic pathway, before advising on the imaging of disease complications and invasive treatments.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

This guideline presents reference limits for use in echocardiographic practice, updating previous guidance from the British Society of Echocardiography. The rationale for change is discussed, in addition to how the reference intervals were defined and the current limitations to their use. The importance of interpretation of echocardiographic parameters within the clinical context is explored, as is grading of abnormality. Each of the following echo parameters are discussed and updated in turn: left ventricular linear dimensions and LV mass; left ventricular volumes; left ventricular ejection fraction; left atrial size; right heart parameters; aortic dimensions; and tissue Doppler imaging. There are several important conceptual changes to the assessment of the heart’s structure and function within this guideline. New terminology for left ventricular function and left atrial size are introduced. The British Society of Echocardiography has advocated a new approach to the assessment of the aortic root, the right heart, and clarified the optimal methodology for assessment of LA size. The British Society of Echocardiography has emphasized a preference to use, where feasible, indexed measures over absolute values for any chamber size.

Open access

Mohammad Qasem, Victor Utomi, Keith George, John Somauroo, Abbas Zaidi, Lynsey Forsythe, Sanjeev Bhattacharrya, Guy Lloyd, Bushra Rana, Liam Ring, Shaun Robinson, Roxy Senior, Nabeel Sheikh, Mushemi Sitali, Julie Sandoval, Richard Steeds, Martin Stout, James Willis, and David Oxborough

Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited pathology that can increase the risk of sudden death. Current task force criteria for echocardiographic diagnosis do not include new, regional assessment tools which may be relevant in a phenotypically diverse disease. We adopted a systematic review and meta-analysis approach to highlight echocardiographic indices that differentiated ARVC patients and healthy controls.

Methods

Data was extracted and analysed from prospective trials that employed a case–control design meeting strict inclusion and exclusion as well as a priori quality criteria. Structural indices included proximal RV outflow tract (RVOT1) and RV diastolic area (RVDarea). Functional indices included RV fractional area change (RVFAC), tricuspid annular systolic excursion (TAPSE), peak systolic and early diastolic myocardial velocities (S′ and E′, respectively) and myocardial strain.

Results

Patients with ARVC had larger RVOT1 (mean ± s.d.; 34 vs 28 mm, P < 0.001) and RVDarea (23 vs 18 cm2, P < 0.001) compared with healthy controls. ARVC patients also had lower RVFAC (38 vs 46%, P < 0.001), TAPSE (17 vs 23 mm, P < 0.001), S′ (9 vs 12 cm/s, P < 0.001), E′ (9 vs 13 cm/s, P < 0.001) and myocardial strain (−17 vs −30%, P < 0.001).

Conclusion

The data from this meta-analysis support current task force criteria for the diagnosis of ARVC. In addition, other RV measures that reflect the complex geometry and function in ARVC clearly differentiated between ARVC and healthy controls and may provide additional diagnostic and management value. We recommend that future working groups consider this data when proposing new/revised criteria for the echocardiographic diagnosis of ARVC.

Open access

Bushra S Rana, Shaun Robinson, Rajeevan Francis, Mark Toshner, Martin J Swaans, Sharad Agarwal, Ravi de Silva, Amer A Rana, and Petros Nihoyannopoulos

Tricuspid regurgitation natural history and treatment remains poorly understood. Right ventricular function is a key factor in determining prognosis, timing for intervention and longer-term outcome. The right ventricle is a thin walled chamber with a predominance of longitudinal fibres and a shared ventricular septum. In health, the low-pressure pulmonary circulation results in a highly compliant RV well equipped to respond to changes in preload but sensitive to even small alterations in afterload. In Part 1 of this article, discussion focuses on key principles of ventricular function assessment and the importance of right ventricular chamber size, volumes and ejection fraction, particularly in risk stratification in tricuspid regurgitation. Part 2 of this article provides an understanding of the causes of tricuspid regurgitation in the contemporary era, with emphasis on key patient groups and their management.