Search Results

You are looking at 1 - 10 of 13 items for

  • Author: Daniel X Augustine x
  • Open access x
Clear All Modify Search
Open access

Shaun Robinson, Liam Ring, Daniel X Augustine, Sushma Rekhraj, David Oxborough, Patrizzio Lancellotti, and Bushra Rana

Mitral valve disease is common. Mitral regurgitation is the second most frequent indication for valve surgery in Europe and despite the decline of rheumatic fever in western societies, mitral stenosis of any aetiology is a regular finding in all echo departments. Mitral valve disease is therefore one of the most common pathologies encountered by echocardiographers, as both a primary indication for echocardiography and a secondary finding when investigating other cardiovascular disease processes. Transthoracic and transoesophageal echocardiography (TOE) play a crucial role in the assessment of mitral valve disease and are essential to identifying the aetiology, mechanism and severity of disease and for helping determine the appropriate timing and method of intervention. This guideline, from the British Society of Echocardiography (BSE), describes the assessment of mitral regurgitation and mitral stenosis and replaces previous BSE guidelines describing the echocardiographic assessment of mitral anatomy prior to mitral valve repair surgery and percutaneous mitral valvuloplasty. It provides a comprehensive description of the imaging techniques (and their limitations) employed in the assessment of mitral valve disease. It describes a step-wise approach to identifying: aetiology and mechanism, disease severity, reparability and secondary effects on chamber geometry, function and pressures. Advanced echocardiographic techniques are described for both transthoracic and transoesophageal modalities, including TOE and exercise testing.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Abbas Zaidi, David Oxborough, Daniel X Augustine, Radwa Bedair, Allan Harkness, Bushra Rana, Shaun Robinson, and Luigi P Badano

Transthoracic echocardiography is the first-line imaging modality in the assessment of right-sided valve disease. The principle objectives of the echocardiographic study are to determine the aetiology, mechanism and severity of valvular dysfunction, as well as consequences on right heart remodelling and estimations of pulmonary artery pressure. Echocardiographic data must be integrated with symptoms, to inform optimal timing and technique of interventions. The most common tricuspid valve abnormality is regurgitation secondary to annular dilatation in the context of atrial fibrillation or left-sided heart disease. Significant pulmonary valve disease is most commonly seen in congenital heart abnormalities. The aetiology and mechanism of tricuspid and pulmonary valve disease can usually be identified by 2D assessment of leaflet morphology and motion. Colour flow and spectral Doppler are required for assessment of severity, which must integrate data from multiple imaging planes and modalities. Transoesophageal echo is used when transthoracic data is incomplete, although the anterior position of the right heart means that transthoracic imaging is often superior. Three-dimensional echocardiography is a pivotal tool for accurate quantification of right ventricular volumes and regurgitant lesion severity, anatomical characterisation of valve morphology and remodelling pattern, and procedural guidance for catheter-based interventions. Exercise echocardiography may be used to elucidate symptom status and demonstrate functional reserve. Cardiac magnetic resonance and CT should be considered for complimentary data including right ventricular volume quantification, and precise cardiac and extracardiac anatomy. This British Society of Echocardiography guideline aims to give practical advice on the standardised acquisition and interpretation of echocardiographic data relating to the pulmonary and tricuspid valves.

Open access

Cameron Dockerill, William Woodward, Annabelle McCourt, Cristiana Monteiro, Elena Benedetto, Maria Paton, David Oxborough, Shaun Robinson, Keith Pearce, Mark J Monaghan, Daniel X Augustine, and Paul Leeson

Introduction

Healthcare delivery is being transformed by COVID-19 to reduce transmission risk but continued delivery of routine clinical tests is essential. Stress echocardiography is one of the most widely used cardiac tests in the NHS. We assessed the impact of the first (W1) and second (W2) waves of the pandemic on the ability to deliver stress echocardiography.

Methods

Clinical echocardiography teams in 31 NHS hospitals participating in the EVAREST study were asked to complete a survey on the structure and delivery of stress echocardiography as well as its impact on patients and staff in July and November 2020. Results were compared to stress echocardiography activity in the same centre during January 2020.

Results

24 completed the survey in July, and 19 NHS hospitals completed the survey in November. A 55% reduction in the number of studies performed was reported in W1, recovering to exceed pre-COVID rates in W2. The major change was in the mode of stress delivery. 70% of sites stopped their exercise stress service in W1, compared to 19% in W2. In those still using exercise during W1, 50% were wearing FFP3/N95 masks, falling to 38% in W2. There was also significant variability in patient screening practices with 7 different pre-screening questionnaires used in W1 and 6 in W2.

Conclusion

Stress echocardiography delivery restarted effectively after COVID-19 with adaptations to reduce transmission that means activity has been able to continue, and exceed, pre-COVID-19 levels during the second wave. Further standardization of protocols for patient screening and PPE may help further improve consistency of practice within the United Kingdom.

Open access

Lauren Turvey, Daniel X Augustine, Shaun Robinson, David Oxborough, Martin Stout, Nicola Smith, Allan Harkness, Lynne Williams, Richard P Steeds, and William Bradlow

Hypertrophic cardiomyopathy (HCM) is common, inherited and characterised by unexplained thickening of the myocardium. The British Society of Echocardiography (BSE) has recently published a minimum dataset for transthoracic echocardiography detailing the core views needed for a standard echocardiogram. For patients with confirmed or suspected HCM, additional views and measurements are necessary. This guideline, therefore, supplements the minimum dataset and describes a tailored, stepwise approach to the echocardiographic examination, and echocardiography’s position in the diagnostic pathway, before advising on the imaging of disease complications and invasive treatments.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

This guideline presents reference limits for use in echocardiographic practice, updating previous guidance from the British Society of Echocardiography. The rationale for change is discussed, in addition to how the reference intervals were defined and the current limitations to their use. The importance of interpretation of echocardiographic parameters within the clinical context is explored, as is grading of abnormality. Each of the following echo parameters are discussed and updated in turn: left ventricular linear dimensions and LV mass; left ventricular volumes; left ventricular ejection fraction; left atrial size; right heart parameters; aortic dimensions; and tissue Doppler imaging. There are several important conceptual changes to the assessment of the heart’s structure and function within this guideline. New terminology for left ventricular function and left atrial size are introduced. The British Society of Echocardiography has advocated a new approach to the assessment of the aortic root, the right heart, and clarified the optimal methodology for assessment of LA size. The British Society of Echocardiography has emphasized a preference to use, where feasible, indexed measures over absolute values for any chamber size.

Open access

Allan Harkness, Liam Ring, Daniel X Augustine, David Oxborough, Shaun Robinson, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

Open access

Abbas Zaidi, Daniel S Knight, Daniel X Augustine, Allan Harkness, David Oxborough, Keith Pearce, Liam Ring, Shaun Robinson, Martin Stout, James Willis, Vishal Sharma, and the Education Committee of the British Society of Echocardiography

The structure and function of the right side of the heart is influenced by a wide range of physiological and pathological conditions. Quantification of right heart parameters is important in a variety of clinical scenarios including diagnosis, prognostication, and monitoring response to therapy. Although echocardiography remains the first-line imaging investigation for right heart assessment, published guidance is relatively sparse in comparison to that for the left ventricle. This guideline document from the British Society of Echocardiography describes the principles and practical aspects of right heart assessment by echocardiography, including quantification of chamber dimensions and function, as well as assessment of valvular function. While cut-off values for normality are included, a disease-oriented approach is advocated due to the considerable heterogeneity of structural and functional changes seen across the spectrum of diseases affecting the right heart. The complex anatomy of the right ventricle requires special considerations and echocardiographic techniques, which are set out in this document. The clinical relevance of right ventricular diastolic function is introduced, with practical guidance for its assessment. Finally, the relatively novel techniques of three-dimensional right ventricular echocardiography and right ventricular speckle tracking imaging are described. Despite these techniques holding considerable promise, issues relating to reproducibility and inter-vendor variation have limited their clinical utility to date.

Open access

Liam Ring, Benoy N Shah, Sanjeev Bhattacharyya, Allan Harkness, Mark Belham, David Oxborough, Keith Pearce, Bushra S Rana, Daniel X Augustine, Shaun Robinson, and Christophe Tribouilloy

The guideline provides a practical step-by-step guide in order to facilitate high-quality echocardiographic studies of patients with aortic stenosis. In addition, it addresses commonly encountered yet challenging clinical scenarios and covers the use of advanced echocardiographic techniques, including TOE and Dobutamine stress echocardiography in the assessment of aortic stenosis.

Open access

Daniel X Augustine, Lindsay D Coates-Bradshaw, James Willis, Allan Harkness, Liam Ring, Julia Grapsa, Gerry Coghlan, Nikki Kaye, David Oxborough, Shaun Robinson, Julie Sandoval, Bushra S Rana, Anjana Siva, Petros Nihoyannopoulos, Luke S Howard, Kevin Fox, Sanjeev Bhattacharyya, Vishal Sharma, Richard P Steeds, Thomas Mathew, and the British Society of Echocardiography Education Committee

Pulmonary hypertension is defined as a mean arterial pressure of ≥25 mmHg as confirmed on right heart catheterisation. Traditionally, the pulmonary arterial systolic pressure has been estimated on echo by utilising the simplified Bernoulli equation from the peak tricuspid regurgitant velocity and adding this to an estimate of right atrial pressure. Previous studies have demonstrated a correlation between this estimate of pulmonary arterial systolic pressure and that obtained from invasive measurement across a cohort of patients. However, for an individual patient significant overestimation and underestimation can occur and the levels of agreement between the two is poor. Recent guidance has suggested that echocardiographic assessment of pulmonary hypertension should be limited to determining the probability of pulmonary hypertension being present rather than estimating the pulmonary artery pressure. In those patients in whom the presence of pulmonary hypertension requires confirmation, this should be done with right heart catheterisation when indicated. This guideline protocol from the British Society of Echocardiography aims to outline a practical approach to assessing the probability of pulmonary hypertension using echocardiography and should be used in conjunction with the previously published minimum dataset for a standard transthoracic echocardiogram.