Browse

You are looking at 1 - 10 of 271 items for

  • Refine by Access: Content accessible to me x
Clear All
Open access

Shaun Robinson, Liam Ring, Daniel X Augustine, Sushma Rekhraj, David Oxborough, Allan Harkness, Patrizio Lancellotti, and Bushra Rana

Mitral valve disease is common. Mitral regurgitation is the second most frequent indication for valve surgery in Europe and despite the decline of rheumatic fever in Western societies, mitral stenosis of any aetiology is a regular finding in all echo departments. Mitral valve disease is, therefore, one of the most common pathologies encountered by echocardiographers, as both a primary indication for echocardiography and a secondary finding when investigating other cardiovascular disease processes. Transthoracic, transoesophageal and exercise stress echocardiography play a crucial role in the assessment of mitral valve disease and are essential to identifying the aetiology, mechanism and severity of disease, and for helping to determine the appropriate timing and method of intervention. This guideline from the British Society of Echocardiography (BSE) describes the assessment of mitral regurgitation and mitral stenosis, and replaces previous BSE guidelines that describe the echocardiographic assessment of mitral anatomy prior to mitral valve repair surgery and percutaneous mitral valvuloplasty. It provides a comprehensive description of the imaging techniques (and their limitations) employed in the assessment of mitral valve disease. It describes a step-wise approach to identifying: aetiology and mechanism, disease severity, reparability and secondary effects on chamber geometry, function and pressures. Advanced echocardiographic techniques are described for both transthoracic and transoesophageal modalities, including TOE and exercise testing.

Open access

Sadie Bennett, Arzu Cubukcu, Chun Wai Wong, Timothy Griffith, Cheryl Oxley, Diane Barker, Simon Duckett, Duwarakan Satchithananda, Ashish Patwala, Grant Heatlie, and Chun Shing Kwok

Background

Anthracycline agents are known to be effective in treating tumors and hematological malignancies. Although these agents improve survival, their use is associated with cardiotoxic effects, which most commonly manifests as left ventricular systolic dysfunction (LVSD). As such, guidelines recommend the periodic assessment of left ventricular ejection fraction (LVEF). However, as diastolic dysfunction likely proceeds systolic impairment in this setting, the role of Tei index may offer additional benefit in detecting subclinical LVSD.

Methods

We conducted a systematic review to investigate the evidence for the use of Tei index in assessing subclinical cardiotoxicity in patients receiving anticancer agents. A search of Medline and EMBASE was performed and relevant studies were reviewed and narratively synthesized.

Results

A total of 13 studies were included with a total of 800 patients (mean age range 46–62 years, percentage of male participants ranged from 0–86.9%). An increase in Tei index was observed in 11 studies, which suggested a decline in cardiac function following chemotherapy. Out of these, six studies indicated that the Tei index is a useful parameter in predicting cardiotoxic LVSD. Furthermore, five studies indicated Tei index to be superior to LVEF in detecting subclinical cardiotoxicity.

Conclusions

Though there are some studies that suggest that Tei index may be a useful indicator in assessing subclinical anthracycline-related cardiotoxicity, the findings are inconsistent and so more studies are needed before the evaluation of Tei index is performed routinely in patients receiving chemotherapy.

Open access

Lauren Turvey, Daniel X Augustine, Shaun Robinson, David Oxborough, Martin Stout, Nicola Smith, Allan Harkness, Lynne Williams, Richard P Steeds, and William Bradlow

Hypertrophic cardiomyopathy (HCM) is common, inherited and characterised by unexplained thickening of the myocardium. The British Society of Echocardiography (BSE) has recently published a minimum dataset for transthoracic echocardiography detailing the core views needed for a standard echocardiogram. For patients with confirmed or suspected HCM, additional views and measurements are necessary. This guideline, therefore, supplements the minimum dataset and describes a tailored, stepwise approach to the echocardiographic examination, and echocardiography’s position in the diagnostic pathway, before advising on the imaging of disease complications and invasive treatments.

Open access

Rebecca Dobson, Arjun K Ghosh, Bonnie Ky, Tom Marwick, Martin Stout, Allan Harkness, Rick Steeds, Shaun Robinson, David Oxborough, David Adlam, Susannah Stanway, Bushra Rana, Thomas Ingram, Liam Ring, Stuart Rosen, Chris Plummer, Charlotte Manisty, Mark Harbinson, Vishal Sharma, Keith Pearce, Alexander R Lyon, Daniel X Augustine, and the British Society of Echocardiography (BSE) and the British Society of Cardio-Oncology (BCOS)

The subspecialty of cardio-oncology aims to reduce cardiovascular morbidity and mortality in patients with cancer or following cancer treatment. Cancer therapy can lead to a variety of cardiovascular complications, including left ventricular systolic dysfunction, pericardial disease, and valvular heart disease. Echocardiography is a key diagnostic imaging tool in the diagnosis and surveillance for many of these complications. The baseline assessment and subsequent surveillance of patients undergoing treatment with anthracyclines and/or human epidermal growth factor (EGF) receptor (HER) 2-positive targeted treatment (e.g. trastuzumab and pertuzumab) form a significant proportion of cardio-oncology patients undergoing echocardiography. This guideline from the British Society of Echocardiography and British Cardio-Oncology Society outlines a protocol for baseline and surveillance echocardiography of patients undergoing treatment with anthracyclines and/or trastuzumab. The methodology for acquisition of images and the advantages and disadvantages of techniques are discussed. Echocardiographic definitions for considering cancer therapeutics-related cardiac dysfunction are also presented.

Open access

Liam Ring, Benoy N Shah, Sanjeev Bhattacharyya, Allan Harkness, Mark Belham, David Oxborough, Keith Pearce, Bushra S Rana, Daniel X Augustine, Shaun Robinson, and Christophe Tribouilloy

The guideline provides a practical step-by-step guide in order to facilitate high-quality echocardiographic studies of patients with aortic stenosis. In addition, it addresses commonly encountered yet challenging clinical scenarios and covers the use of advanced echocardiographic techniques, including TOE and Dobutamine stress echocardiography in the assessment of aortic stenosis.

Open access

Cameron Dockerill, William Woodward, Annabelle McCourt, Cristiana Monteiro, Elena Benedetto, Maria Paton, David Oxborough, Shaun Robinson, Keith Pearce, Mark J Monaghan, Daniel X Augustine, and Paul Leeson

Introduction

Healthcare delivery is being transformed by COVID-19 to reduce transmission risk but continued delivery of routine clinical tests is essential. Stress echocardiography is one of the most widely used cardiac tests in the NHS. We assessed the impact of the first (W1) and second (W2) waves of the pandemic on the ability to deliver stress echocardiography.

Methods

Clinical echocardiography teams in 31 NHS hospitals participating in the EVAREST study were asked to complete a survey on the structure and delivery of stress echocardiography as well as its impact on patients and staff in July and November 2020. Results were compared to stress echocardiography activity in the same centre during January 2020.

Results

24 completed the survey in July, and 19 NHS hospitals completed the survey in November. A 55% reduction in the number of studies performed was reported in W1, recovering to exceed pre-COVID rates in W2. The major change was in the mode of stress delivery. 70% of sites stopped their exercise stress service in W1, compared to 19% in W2. In those still using exercise during W1, 50% were wearing FFP3/N95 masks, falling to 38% in W2. There was also significant variability in patient screening practices with 7 different pre-screening questionnaires used in W1 and 6 in W2.

Conclusion

Stress echocardiography delivery restarted effectively after COVID-19 with adaptations to reduce transmission that means activity has been able to continue, and exceed, pre-COVID-19 levels during the second wave. Further standardization of protocols for patient screening and PPE may help further improve consistency of practice within the United Kingdom.

Open access

Alfonso Pecoraro, Jacques Janson, and Jacob Daniel Cilliers

Open access

Abbas Zaidi, David Oxborough, Daniel X Augustine, Radwa Bedair, Allan Harkness, Bushra Rana, Shaun Robinson, and Luigi P Badano

Transthoracic echocardiography is the first-line imaging modality in the assessment of right-sided valve disease. The principle objectives of the echocardiographic study are to determine the aetiology, mechanism and severity of valvular dysfunction, as well as consequences on right heart remodelling and estimations of pulmonary artery pressure. Echocardiographic data must be integrated with symptoms, to inform optimal timing and technique of interventions. The most common tricuspid valve abnormality is regurgitation secondary to annular dilatation in the context of atrial fibrillation or left-sided heart disease. Significant pulmonary valve disease is most commonly seen in congenital heart abnormalities. The aetiology and mechanism of tricuspid and pulmonary valve disease can usually be identified by 2D assessment of leaflet morphology and motion. Colour flow and spectral Doppler are required for assessment of severity, which must integrate data from multiple imaging planes and modalities. Transoesophageal echo is used when transthoracic data is incomplete, although the anterior position of the right heart means that transthoracic imaging is often superior. Three-dimensional echocardiography is a pivotal tool for accurate quantification of right ventricular volumes and regurgitant lesion severity, anatomical characterisation of valve morphology and remodelling pattern, and procedural guidance for catheter-based interventions. Exercise echocardiography may be used to elucidate symptom status and demonstrate functional reserve. Cardiac magnetic resonance and CT should be considered for complimentary data including right ventricular volume quantification, and precise cardiac and extracardiac anatomy. This British Society of Echocardiography guideline aims to give practical advice on the standardised acquisition and interpretation of echocardiographic data relating to the pulmonary and tricuspid valves.

Open access

A J Fletcher, S Robinson, and B S Rana

Right atrial pressure (RAP) is a key cardiac parameter of diagnostic and prognostic significance, yet current two-dimensional echocardiographic methods are inadequate for the accurate estimation of this haemodynamic marker. Right-heart trans-tricuspid Doppler and tissue Doppler echocardiographic techniques can be combined to calculate the right ventricular (RV) E/e′ ratio – a reflection of RV filling pressure which is a surrogate of RAP. A systematic search was undertaken which found seventeen articles that compared invasively measured RAP with RV-E/e′ estimated RAP. Results commonly concerned pulmonary hypertension or advanced heart failure/transplantation populations. Reported receiver operating characteristic analyses showed reasonable diagnostic ability of RV-E/e′ for estimating RAP in patients with coronary artery disease and RV systolic dysfunction. The diagnostic ability of RV-E/e′ was generally poor in studies of paediatrics, heart failure and mitral stenosis, whilst results were equivocal in other diseases. Bland–Altman analyses showed good accuracy but poor precision of RV-E/e′ for estimating RAP, but were limited by only being reported in seven out of seventeen articles. This suggests that RV-E/e′ may be useful at a population level but not at an individual level for clinical decision making. Very little evidence was found about how atrial fibrillation may affect the estimation of RAP from RV-E/e′, nor about the independent prognostic ability of RV-E/e′ . Recommended areas for future research concerning RV-E/e′ include; non-sinus rhythm, valvular heart disease, short and long term prognostic ability, and validation over a wide range of RAP.

Open access

Shaun Robinson, Bushra Rana, David Oxborough, Rick Steeds, Mark Monaghan, Martin Stout, Keith Pearce, Allan Harkness, Liam Ring, Maria Paton, Waheed Akhtar, Radwa Bedair, Sanjeev Bhattacharyya, Katherine Collins, Cheryl Oxley, Julie Sandoval, Rebecca Schofield MBChB, Anjana Siva, Karen Parker, James Willis, and Daniel X Augustine

Since cardiac ultrasound was introduced into medical practice around the middle twentieth century, transthoracic echocardiography has developed to become a highly sophisticated and widely performed cardiac imaging modality in the diagnosis of heart disease. This evolution from an emerging technique with limited application, into a complex modality capable of detailed cardiac assessment has been driven by technological innovations that have both refined ‘standard’ 2D and Doppler imaging and led to the development of new diagnostic techniques. Accordingly, the adult transthoracic echocardiogram has evolved to become a comprehensive assessment of complex cardiac anatomy, function and haemodynamics. This guideline protocol from the British Society of Echocardiography aims to outline the minimum dataset required to confirm normal cardiac structure and function when performing a comprehensive standard adult echocardiogram and is structured according to the recommended sequence of acquisition. It is recommended that this structured approach to image acquisition and measurement protocol forms the basis of every standard adult transthoracic echocardiogram. However, when pathology is detected and further analysis becomes necessary, views and measurements in addition to the minimum dataset are required and should be taken with reference to the appropriate British Society of Echocardiography imaging protocol. It is anticipated that the recommendations made within this guideline will help standardise the local, regional and national practice of echocardiography, in addition to minimising the inter and intra-observer variation associated with echocardiographic measurement and interpretation.